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SOLUTIONS FOR SECOND-ORDER ELLIPTIC 

PROBLEMS 
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SUMMARY 
The paper describes a numerical scheme for solving a convection-diffusion elliptic system with very small 
diffusion coefficients. This iterative numerical procedure is unconditionally stable and converges very 
rapidly. Although only linear equations are considered here, this technique can be easily extended to non- 
linear equations, while keeping its main features as for the linear case. The numerical experiments presented 
are quite general and confirm most of these features. These examples also show a good way of implementing 
this scheme. 
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1. INTRODUCTION 

The present paper investigates the numerical solutions for an elliptic linear PDE of the 
convection4iffusion type. Without loss of generality the numerical scheme will be presented for 
the two-dimensional case, since the extension for higher-dimensional problems is quite straight- 
forward. The following two-dimensional equation for & will be considered in the present study: 

(1) L(&) = u9.x + u&y - E(4X.x + 9 y y )  - R = 0. 
This is solved over the two-dimensional domain R with boundary an. L is a linear two- 
dimensional partial differential elliptic operator, u = u(x, y) and u = v(x ,  y )  are the convection 
coefficients, E is the diffusion coefficient and R = R ( x ,  y) is a known source term. The first and 
second derivatives of & with respect to x are denoted by d X  and &,.. respectively. Similar notations 
are used for the y-derivatives of 9. Equation (1) is subject to certain boundary conditions for & on 
8Q. When solving this equation by a finite difference (FD) technique, a FD grid is spread over the 
domain Q. Then equation (I) is approximated at all the grid points of Q, which leads to a linear 
system of equations for the discrete values of 0, @ defined over this grid. Numerical treatment of 
this problem has a long history,', especially in solving the Navier-Stokes  equation^.^ The main 
problem is how to treat numerically the convection terms in equation (1) in regions of Q where the 
convection dominates the diffusion. Basically it is known that central differencing (CD) for these 
terms may lead to a non-physical oscillatory behaviour or even to a non-converged s ~ l u t i o n , ~  
while upwind differencing is a non-diverging technique but introduces a false diffusion term into 
the original e q ~ a t i o n . ~  Some more accurate upwind schemes have been proposed in the past, 
especially for fluid flows,' like the KR method' and the Hibrid m e t h ~ d , ~  among others. However, 
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their use was found to be very limited, as is discussed in the respective papers. The finite difference 
approximation of the convection terms is the main subject of the present paper. 

2. THE NUMERICAL SET-UP 

In order to simplify the presentation of the numerical scheme, let us assume that R is a 
rectangular in the (x, y) plane. The FD grid consists of M discrete points in the x-direction and N 
points in the y-direction, where the spacings are not necessarily equal to each other. Let us denote 
by x i  the x-value of the ith discrete point on the x-axis and by yj the y-value of the jth discrete 
point on the y-axis. The local intervals in the x- and y-directions are defined as follows (see 
Figure 1): 

h i=x i -x i - l ,  1 < i <  M, (2) 

k j =  yj - yj- 1 ,  1 < j  < N. (3) 
The following definitions for the local mesh ratio and the local average interval length are also 
needed: 

hi+ l  - 
0.  = __ 
’ hi ’ hi = ) (hi  + + h i )  = )(xi + - xi - 1), 1 < i < M ,  

1 < j < N .  

(4) 

The FD approximation of equation (1) at the grid point ( i ,  j) is based on the truncated Taylor 
series for f+h at this point.6 Let us denote by Q the FD approximation of the quantity Q, where the 
bars are omitted for 4 itself, understanding that it is defined at the grid points. We will define the 
truncation error T(Q) for the approximation Q for the quantity Q as 

Q + T ( Q ) = Q .  (6) 
For the second derivatives for 4 we will use the standard central difference approximation over a 
non-uniform grid:6 

y l  R 

Figure 1. Notations for the FD grid 
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Here 
which is given by 

is the value of the truncation error function T of this approximation at the point ( i , j ) ,  

a 3 + 1  - z - 1 -  
h2@x,,, + ---k@yyy + ___ 

Z + l  

If the sequences of the FD intervals { h i } E 2  and {kj}i”, ,  are analytically continuous, i.e. 
ai = 1 + O(hi) and z j  = 1 + O(kj ) ,  then the approximation given by equation (7) is of the second 
order,’ The FD approximation of the convection terms is the main subject of the present paper 
and is discussed in the next section. 

3. FD MODELS FOR THE CONVECTION 

The choice of the FD approximation for the first derivatives of $I appearing in equation(1) 
depends on the way that the final algebraic system of equations is solved. If this system is solved 
by some direct methods,* then second-order accurate solutions may be obtained (when standard 
second-order CD approximations are used) to any machine accuracy. However, if iterative 
procedures are used, then most of the solutions will diverge for large convection coefficients. Since 
direct methods are very limited in their use (mainly because of the special structure of the matrices 
and the usage of large computer resources), most of the time this system is solved by iterative 
techniques. The present paper considers mainly iterative techniques for solving the final elliptic 
FD algebraic equations. 

A necessary convergence condition for most of the (explicit and implicit) iteration procedures 
used to solve this problem is that the algebraic system be diagonal d ~ m i n a n t , ~  independent of the 
way the iterative procedure is introduced. If second-order CD is used, for instance the following 
first derivative at some inner point <: 

then this condition ends up with certain limitations on the so-called local mesh Reynolds 
n ~ m b e r . ~  The local directed mesh Reynolds numbers R” and RY are defined as follows: 

When equation (9) is used as the FD approximations for the fitst derivatives of the convection 
part of equation ( I ) ,  together with equation (7) as the FD approximation of the diffusion part, 
then the convergence is assured if 

(1 1) 
This way of solving equation (1) is the classical method (CM), and for very large convection 
coefficients its iteration procedure might not be stable. For these cases most of the numerical 
approaches suggest using the upwind differencing approach, which may be written at the grid 
point (i, j) as follows: 

R t j ,  R [ j  < 2. 

[ @ i , j - > - t , j  , if U , , ~ > O ,  
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By substituting equation (12), (13) and (7) into equation (1), it can be verified that the diagonal 
dominance of the algebraic system is preserved and any standard explicit or implicit method will 
be stable. However, this approach has two basic limitations: 

The rate of convergence is slowed down dramatically as any of the directed local mesh 
Reynolds numbers  increase^.^ Since this approach creates a very non-symmetric coefficient 
matrix for the system of equations, the regular accelerating techniques, like the conjugate 
gradient technique,' will help little in increasing the convergence rate. 
The second limitation, which is much more severe than the first, is the fact that equa- 
tions (12) and (13) present FD approximations which are accurate only to order one. 
Because the truncation error here is proportional to h& and k4,,, some artificial 
(numerical) diffusion is added to E ,  and equation (1) is solved for a different (and in fact much 
larger) diffusion coefficient from that which appears in the original equation (l), producing, 
of course, wrong solutions for the p r ~ b l e m . ~  

In the past, several second-order upwind schemes for the convection terms have been proposed, 
some of them being only marginally stable.' One of the most commonly used second-order 
methods is the KR scheme,' which may be written for the 4x term at the grid point ( i , j )  as follows: 

where C is the correction function, defined as: 

~ 

Similar expressions may be obtained for ( @ y ) i , j .  The upper index in equation (14) indicates the 
iteration number and C(@) is a term which has to be added to the appropriate expressions in 
equations (12) and (13) in order to make them second-order accurate as given by equations (14) 
and (15). When using equations (14) and (15), the solutions obtained at each stage n of the iteration 
procedure are accurate only to the first order, while they are second-order accurate in the 
converged state. However, this approach suffers from several deficiencies: 

It is not quite clear how to use this kind of iteration approach in the framework of the other 
iteration loops used to solve this problem, like the iteration scheme for overcoming the two- 
or three-dimensional nature of the field, or iterations due to the non-linearity of the system if 
it exists. 
As in the first-order upwind case, the rate of convergence decreases dramatically as R" and 
RY increase. This slowing down of the convergence rate of equations (14) and (15) is much 
more pronounced than that of equations (12) and (13); in fact, the spectral radius of the 
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iteration procedure expressed by equation (14) is proportional to 1 - h2, where h is the 
smallest grid spacing in R, when equation (1) is undimensionalized appropriately. l 1  

In the present work a new upwind second-order accurate FD approximation for the convection 
terms will be presented in the spirit of the KR scheme' and which is based also on the one-sided 
extrapolation of the CD approximations for the first derivatives. This is discussed in the following 
section. 

4. SECOND-ORDER UPWIND APPROXIMATION 

Let us derive the FD approximation for (u@.Ji, assuming ui, > 0 with the following features: 

(a) should be order-two accurate 
(b) should be unconditionally stable when used with implicit methods. 

The final formulation can be extended also for negative values of this coefficient. Let us denote by 
1 the point (i - 1/2, j ) ,  by 2 the point (i - 3/2, j )  and by 0 the point ( i , j )  as shown in Figure 2. 

Lemma 1. For j - ~  C2, the following second-order FD approximation for fo exists: 

with a truncation error 

T,=- I+-  . . . :( 2Li) 

Lemma 2. Iffi and f 2  in Lemma 1 are replaced by f ;  and respectively, then given by this 
lemma is O(h2)  accurate. 

Lemma 3. The quantity (@x)i,j can be approximated to order two by 

The above three lemmas can be proved easily. In order to formulate the present upwind technique, 
let us consider the time-dependent version of equation (1): 

a@, + L(@) = 0. 

The sign of the artificial coefficient a is such that this equation is parabolic in t ,  where t is the time- 
like co-ordinate. It is desired to get the steady state solutions for this equation in a stable and 
rapid manner, beginning from some given initial conditions. Denoting by A the time step, and by 

(19) 

2 1 0 * - 
i - 2  i - 1  1 2 

Figure 2. Location of the grid points for the present scheme 
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n the time step index, and using equations (7) and (16), the following FD approximations are 
suggested for ui. > 0: 

l , j  - (1 + ai)@!;j + ai@j? 1, j 

[2(Ti/( 1 + Oi)] 
(@xx)i, j = 

This second-order upwind scheme will be referred hereafter as the S method. It is worth noting 
that the truncation error of this approximation is 

Theorem 1. The solutions for equation (19) using equations (20H22) are unconditionally stable 
for all n 2 1. 

Pro05 Let us use here the Von Neumann analysis, applied for an equally spaced mesh: 

hi = h, ki = k.  (24) (T. = 7. = 1 
I J '  

Den0 ting 

where i2 = - 1 and I is a complex number defined as the amplification factor. Substitution of 
equation (26) into equations (20H22) and then into equation (12) gives the following equation for 
the absolute value of the amplification factor: 

[I +c,(cosu-cos2a) + c ~ ( c o s ~ ~ - c o s ~ ~ ) ] ~  + [c1(sinu-sin2a)+ c,(sinb-~in2fl)]~ 
[l + ( d ,  + 6c,)sin2 ( 4 2 )  + (d2  + 6c,)sin2 (/3/2)12 + 9[clsina + c2sinflI2 

1 I 1 2 =  3 

where 
u A / a  vAla 4 ~ A l a  4 ~ A l a  

d2 =- 
k2 

d l = -  h2 ' 
c2 =- 

2k ' c,=- 
2h ' 

are positive coefficients. The following can be proved: 

1. From the fact that 

sin y - sin2y < 3sin y, 0 y < 'II, 
the second term in the numerator of equation (27) is smaller than the second term in the 
denominator of that equation. 
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2. From the fact that 

1 cosy - cos 2y 1 < 6sin2 (y/2), 

the first term in the numerator is smaller than the first term of the denominator, independent 
of the value of a and 8. 

Therefore one can get for all p and q in equation (27) 

I4 < 1, 
even for the case where a/A -+ co. 0 

In fact, the rate of convergence towards the steady state is determined mainly by the short 
waves of the error propagation, given approximately by 

1 L 1 ~  1 - ~ C ( d 1 / 2 + 7 c 1 ) a 2 + ( d 2 / 2 + 7 c 2 ) 8 Z ] .  (32) 
Thus if 1 and U are the respective length scale and convection coefficient scale used to normalized 
equation (l), then the choice of A = l /U gives the maximum rate of convergence, which is about 
3 . 5 7 ~ ~ .  In practice, one usually gets a smaller rate of convergence, as will be shown in the examples. 

5. BOUNDARY CONDITIONS 

Since the governing equation is elliptic, boundary conditions (BC) for Q, should be imposed at all 
the grid points of dR. Generally, two types of BC may be imposed: the Dirichlet BC and the 
Neumann BC. In this section we will formulate numerical models for these two types of BC which 
are suitable and consistent with the suggested numerical FD approximation for the convection 
part of equation (1). Let us derive these formulations for a boundary located at x = constant, 
which is a straight line parallel to the y-axis, and where the convection coefficient of the ax term is 
positive near this boundary. A sketch of the present boundary is given in Figure 3. All other kinds 
of boundaries and convection coefficients may be treated in a very similar way. 

5.1. Dirichlet boundary conditions 

The Dirichlet BC are such that the values of Q, are given on the boundary, i.e. the value of 0 at 
the point 0, 0,, is given. The FD approximation for the x-convection term at the point 1 is 
derived from Lemma 3 to give in the case u1 2 0 

where the point - 1 is an artificial point located at a distance h, = h, behind the boundary (with 
go = 1). The value of 0- is obtained from equation (1) by applying it at the boundary. In this 
situation it may be written as follows: 

uo(0.do - E(Q,X,)O = so, (34) 

Figure 3. Location of points near the boundary 
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where 
S = R - u@, + E@,,, (35) 

is a known quantity at the boundary points 0. The left-hand side of equation(34) will be 
approximated by second-order central differences for the first and second derivatives. By 
substituting equations (7) and (9) into equation (34), the following expression for @- , is obtained: 

RG-2 4 2S0 h2 
@; +- @-, =- 

R G + 2  RG + 2" -E(RG + 2)' 

After substituting this expression into equation (33), the following equation is obtained: 

Thus this FD model for the Dirichlet BC may be implemented at the new time step n since it is 
always diagonal dominant without any delayed or lagged correction terms. 

5.2. Neumann boundary conditions 

point 0. Denoting by K the quantity 
This condition means that the values of the first derivative are given at the boundary 

@ =+- u@ -s 
X I  = K ,  

& 

which may be known at the point 0 from the previous iteration, say, the following FD 
approximation can be proven to be of second order: 

This equation presents a second-order diagonal dominant formulation for the Convection near 
the boundary, where it is considered to be applied in the new time step n without any lagged 
(correction) terms. 

6. CONSIDERATION O F  THE ITERATIVE SCHEME 

The present scheme, which is given by equations (20)-(22), can be written for u, u 2 0 at each stage 
n as follows: 

Here @ is the discrete function's values at the iteration level n, and equation (33) is solved at each 
stage n with the following expression for Fi, (for the case u, u 2 0): 

The convection parts in equation (40) are replaced by equation (33) or equation (39) at points on 
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the boundaries (with appropriate modifications for the directions and locations of the bound- 
aries). These equations are also used at the grid points next to the boundaries. They help in 
replacing the values of @ at the points i f 2 and j f 2 by again using the boundary conditions. 
Equation (41) may be treated at the n level (* = n) for a direct solution or at the n- 1 level 
(* = n - 1) for an iterative solution. Obviously, when using the second possibility in the iterative 
mode for equation (40), the solution at the stage n does not simulate the final solution, not even to 
first order as happens, for instance, with the KR method.' On the other hand, it converges very 
fast to the final solution, as expressed by equation (32). Since equation (40) presents a general two- 
dimensional FD equation for @, it will be solved in the present study in an iterative manner. The 
case where Fi, is treated at the n level is not the main subject of the present paper. However, it is 
not difficult to prove the following theorem: 

Theorem 2. When Fir) is used in equation (40), and it is solved iteratively by the line relaxation 
or the alternating line relaxation technique, then the procedure is unconditionally stable. 

Proot This theorem assumes that the FD approximation for equation (1) is given by 

x. Y X X 

Y Y x. Y 

X 

where elements that are denoted by -- . . .  are treated implicitly in the first (x) sweep, and elements 

that are denoted by -A- . . .  are treated implicitly in the second (y) sweep of each iteration. Applying 
the Von Neumann analysis expressed in equation (26) for the case with ai = 1 and where hi and k j  
are constants, the amplification factor A of the error between two successive alternating line 
relaxation procedures as a function of the modes a and @ is given by 

Y 

A =  A 1 * A 2 ,  (43) 
where 
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Here the specific local mesh Reynolds numbers are 

R, = max R t j ,  R ,  = max R;, i. 
i ,  i i, i 

It can be shown that maxi, A occurs 

(a) for the first modes of the error, i.e. a = n / M  and /? = n/N 
(b) for aR, - BR, = 0 ( u 2 ,  p2).  

Using these results, the error amplification factor can be approximated by 

29 a/? 

3(R,+  R,) + 8 '  
A - l -  

which is less than 1 for all practical M and N (such that M x N > 36). 0 

Using this approach, the solution to the problem is obtained by applying two iteration loops: 
the outer loop which iterates on the lagged correction terms of the convection part, and the inner 
loop which solves the two-dimensional field, equation (40), for each state of these correction 
terms. Schematically in this S1 iteration scheme, equation (40) can be rewritten in the following 
general form: 

where A is the coefficient matrix whose elements are given by equation (40), @ is the vector of 
variables, consisting of the @-values at all the grid points, and F is the source term vector whose 
elements are given by equation (41). If M N  = M x N ,  then the length of Q, and F is M N  and the 
dimension of A is M N  x M N .  A is a five-diagonal matrix: it has three main diagonals and the 
other two are located at a distance N (or M ,  depending on the ordering of the grid points) on both 
sides of the main diagonal. In a similar way we can write the definition of the source term F as 

(47) A@(") = F("-1), 

follows: 
F = C @ + R ,  

where R is a vector containing the original source term contributions of equation (1) at the 
various grid points, and the matrix C is in general a six-diagonal matrix. For example, when 
considering implicit solutions in the x-direction, the entries of C will come from the values of CP at 
the pointsj f 1,j k 2 and i k 2. Generally, when solving equation (47), the following splitting of A 
is considered: 

A = P - Q ,  (49) 
where P is a matrix chosen such that its inverse can be found directly at the expense of a 
reasonable amount of the CPU time and computer memory allocation (for example, by some 
kind of factorization technique). In this case equation (47) is solved iteratively by 

(50) @:) = B@:'_ + p- 1 F(n- I), 

where m is the iteration index and 
B = I - P-' A 

is the iteration matrix. A necessary and sufficient condition for the iteration procedure, equa- 
tion (50), to converge is that the spectral radius A of the iteration matrix will be bounded by l: 

A(B) < 1. (52) 
The following Stein theorem is needed to prove Theorem 4 below:" 
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Theorem 3. Any real matrix G has A(G) < 1 if and only if there exists a real positive definite 
matrix E such that the real matrix D given by 

D = E- GEG' 
is positive definite. 

(53) 

The following theorem is of some advantage in implementing the present numerical scheme. 

Theorem 4. Any two-dimensional iteration procedure of the present second-order upwind 
scheme that fulfils the condition (52) will also converge if m = n in equation (50). 

Comment. This theorem means that after choosing a stable inner iteration procedure, one might 
collapse together the outer and inner iteration loops, producing one iteration loop in which the 
second-order upwind correction terms are also updated, and still get convergence. We will denote 
this kind of iteration scheme by S2. 

Pro05 We will outline only the main steps of the proof; it is easy to complete all the other 
details. It is convenient to consider the matrix A as consisting of two matrices: 

A = [CON] + [DIF], (54) 

where [CON] is the convection contribution matrix and [DIF] is the diffusion contribution 
matrix. It should be remembered that [DIF] is a positive definite matrix.12 Now, a necessary 
condition for the iteration procedure defined by equation(50) to be acceptable is that it will 
converge for a pure diffusion-type problem. Thus we should also have A(I - P- ' [DIF]) < 1. Yet, 
because of the existence of condition (52), the matrix G=P-'[CON] has the property that 
A(G) < 1 by using Theorem 3. The matrix C can be obtained from the matrix [CON] by using 
the scaling and shifting matrix K: 

C = K x [CON], (55)  

where K 2 0, and can be proven to be positive definite. Thus, by using the Stein theorem again, 
but applying it now to P-'C, this convergence theorem is proved. 

In the examples that will be discussed later in the paper, it will be shown that the convergence 
when rn = n is in fact much faster than when the two iteration loops are considered separately. 

7. IMPLEMENTATION OF THE PRESENT SCHEME 

In order to make use of the scheme presented above while implementing the various theorems 
that have been discussed, the modified strongly implicit (MSI) method13 has been chosen as the 
iterative procedure which can be presented also by equation (50). For two-dimensional fields the 
strongly implicit (SI) methodI4 suggests the following iterative scheme for solving equations of the 
form of equation (40). 

(56) CD. 1 s J  . = a .  L J  .CDj-l,j+bi,jCDi,j-~+~i,j, 
where the matrices a, b and c are calculated using the elliptic FD equation (like equation (40)) 
based on the values of @ from the last iteration. Examining the source term of the SI method c, 
it may be shown that it can be split into three terms, two of which contain elements of 
CDi + ', j -  and CDi - ', j +  Moving these terms to the left-hand side of equation (56), the MSI 
method'j is recovered. This suggests solving the elements of @ along diagonal lines of the field, 
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using the implicit tridiagonal inversion algorithm. It can also be shown13 that there are several 
ways to implement the MSI procedure. Here we will use the simple form of the MSI technique, 
trying to parametrize it in a simple manner” by using the following form of the iterative 
technique: 

where * denotes the values at the new iteration level and the rest of the terms are treated as known 
from the previous iteration level. It should be noted that the c source term in equations (56) and 
(60) should be split according to the MSI scheme, to achieve an implicit system along the 
diagonals of the field. o is a matrix which maximizes the rate of convergence of the MSI 
technique; usually the elements of this matrix are 1 < < 1, where the standard SI p r o c e d ~ r e ’ ~  
is recovered for m i ,  = 1. The coefficient matrices a, b and c are the coefficient matrices given 
originally by the SI method. l 4  Application of the appropriate recursion formula to the present 
case results in the following set of equations (given here for u, u 

@fj = ~ i , j ( ~ i ,  j @ i -  1, j + bi ,  j @ i , j -  1 + c i , j )  + (1 - ~ i ,  j)@i, j ,  (57) 

0): 
E (  1 + ai) 

b. .= -[ 1 (2 --)% 1 + 2 1  E ( l  +t.) 
I s J  D l + t j - ,  kj 2kf ’ (59) 

where 

Equations(57H60) imply that each iteration consists of the usual two sweeps of the MSI 
technique: 

1.  In the first sweep the matrices a, b and c are calculated using these equations. 
2. In the second sweep @ is calculated using equation (56) 

Here the evaluation of @ is done by solving a tridiagonal system along the diagonal of R.15 It 
should be noted that one has to be careful in incorporating the boundary conditions into these 
matrices, as is discussed in other papers.I5 

8. NUMERICAL EXPERIMENTS 

For the numerical tests we have chosen the two-dimensional domain R = (0, 1)  x (0, 1). The tests 
are done by choosing 

(a) an analytical solution for @ 
(b) analytical convection coefficient functions u(x,  y) and u(x ,  y) 
(c) for a given diffusion coefficient E, the source function R ( x ,  y) is calculated analytically. 

By using the discrete values of u, u and R on a given FD grid, the values of @ are calculated by the 
numerical approach that has been presented here and are compared with the exact values. In 
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what follows ‘ERROR means the maximum difference between the exact solution and the 
numerical solution in the domain: 

Test 1. The following function has been chosen: 

@(x, y) = sin nx + cos ny. (63) 
The convection coefficients were chosen to be constant across the domain, with E = 0.01. The BC 
were chosen to be of the Dirichlet type. This problem was run first under the two different modes 
of iteration procedure: 

(a) using two iteration loops (the S1 scheme) 
(b) using only one iteration loop (the S2 scheme). 

The test was executed with large convection coefficients: u = 10, u = 10. Table I gives the variation 
of the error for M = N = 51 and for M = N = 101 grids, where the grid points were evenly spread. 
It can be seen that the rate of convergence of the one-iteration-loop approach is much faster than 
the originally suggested two-iteration-loop approach. The local mesh Reynolds numbers for these 
FD grids are 20 and 10 respectively. When this problem was solved with the standard second- 
order FD approximation, the CM method, using the MSI iteration technique, the procedure was 
not stable and the solution diverged. Of course it is possible to find values for mi, (in the interval 
[0,13) such that the solution will not diverge but will not converge either. Table I1 summarizes 
the errors for this problem for different grids. The second-order accuracy of the solution can be 
readily verified. It is also interesting to compare the converged solutions of the present approach 
with those of the CM scheme. To do this we have chosen u = v = 0.1 so that for M, N - 20 the 
MSI procedure will also be stable for the classical scheme. The comparison is presented in 
Table I11 for different FD grids. The main conclusion from these results is that although both 

Table I. Comparison of the number of iterations to reduce the error to a prespecified 
ERROR level 

51 x 51 grid 101 x 101 grid 

ERROR S1 method S2 method S1 method S2 method 

0.1 
0.05 
0.01 
0.00 1 
O~OOO 1 

10 4 22 6 
21 6 30 8 
40 8 59 11  
66 9 125 15 
84 11  17 179 

Table 11. Errors produced by the present scheme for different FD 
grids for I(: = o = 10 and a convergence criterion of 

M = N  20 40 80 160 

Dirichlet BC 1*4E + 1 1.8E + 0 2.4E - 1 3.6E - 2 
Neumann BC 3.2E- 1 2.7E-2 3.1E-3 5.7E-4 
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Table 111 .  Comparison between the C D  method and the present second-order 
upwind method for u = u = O . 1  and a convergence criterion of 10 l 3  for the 

Dirichlet BC 

Central differences (CM) Present method (S) 

Number of Number of 
M = N  iterations maxi@ - @,,,,,l iterations maxi@ - @,,,,,I 

20 14 4.8 I E - 2 I02 8.47E - 2 
40 266 520E - 3 305 1.20E-2 
80 980 I .O 1 E - 3 1002 2.ME - 3 

160 3650 1.23E-4 3600 3.93E - 4 

schemes, the CM scheme and the S2 scheme, are at least second-order accurate, the results of the 
CM method are closer to the exact solutions than those of the S2 method. This difference in the 
errors cannot come from the approximations at the inner points of f2, since the truncation error of 
the S method is only about twice as large as that of the CM method. Rather, the difference arises 
mainly because of the FD approximations at the points on (?Q as stated in the following theorem: 

Theorem 5. If then the ratio between the truncation errors of the S method and the C M  
method when using Dirichlet BC reaches a maximum near the boundary o'R and is around 2-3 
plus a linear function of the local specific mesh Reynolds number. 

P r m f  For small diffusion coefficients, the main contribution to the truncation error comes 
from the convection terms. Let us denote by T, the truncation error of the x-convection term when 
the CM procedure is used. Using equation (34), it can be shown that the truncation error of the 
appropriate term in the S method (equation (37)) near the boundary, after substituting it into the 
governing equation to be solved (equation (1)) is 

1 
( 3  - A) T, + q h 3 ~ x x x x .  

Thus the ratio between the two truncation errors is 

2 3 @xxxx 3 -  ~ + -h-. 
R x + 2  2 axXx 

This approximation happens to be larger than that in the inner field. Under mild assumptions, the 
ratio ~h4xxxx /4xxx  can be approximated by taking the governing equation ( I )  to be approxi- 
mately R". Thus the above ratio can be written as 1 5 R "  + 3 - 2/(R" + 2), so that for small values 
of R" this ratio is - 2, and for large values of R" it is - 3(1 + R"/2). This result can be roughly 
verified from the results given in Table 111. Moreover, as M and N become smaller, the value of 
this last term may become larger than 1.5. This fact is also verified by this table. 0 
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Test 2. In this we have considered the same problem as in Test 1, but the equation is subject to 
the following Neumann BC: 

-1 at x =  1, -=1  a tx=O,  -= 
ao ao 
ax ax 

with <D(x = 0, y = 0.5) = 0. Table I1 summarizes the errors for different FD grids. The second- 
order accuracy of the solutions can be verified. It can be seen very clearly from this table that the 
results of the Neumann BC problem are much more accurate than those of the Dirichlet problem. 
The reason for this is that by using equation (39) it can be proven that the maximum value of the 
ratio of the truncation errors for this case is 2. 

9. CONCLUSIONS 

The paper presents a second-order upwind numerical scheme for solving a linear con- 
vection4iffusion elliptic equation. The scheme is of the iterative type, where in each iteration a 
similar problem to the original one is solved, using a standard upwind scheme with larger 
convection coefficients and appropriate correction terms. This method was proven and found to 
be unconditionally stable, its main feature being its rapid rate of convergence. This feature does 
not change much even when the above iteration procedure is combined with the iteration 
procedure due to the sparsity of the system (or to the multidimensionality nature of the governing 
equation). Although only a two-dimensional formulation has been presented, the scheme can be 
extended very easily to any number of elliptic dimensions. 

It is possible to extend this method to the solution of numerically non-linear elliptic PDEs. 
Three iterative loops can be generated for this case: 

(a) the inner loop due to the second-order upwind correction term 
(b) the middle loop due to the multidimensionality of the problem 
(c) the outer loop due to the non-linearity of the problem. 

A number of questions remain which require further investigation: 

1. How does this kind of iterative strategy converge? 
2. Does the order in which the three loops are executed affect the rate of convergence? 
3. Is it possible to get a higher rate of convergence by combining two of the loops or even 

collapsing all three loops into one loop? 
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